Cell squeezing as a robust, microfluidic intracellular delivery platform.

نویسندگان

  • Armon Sharei
  • Nahyun Cho
  • Shirley Mao
  • Emily Jackson
  • Roberta Poceviciute
  • Andrea Adamo
  • Janet Zoldan
  • Robert Langer
  • Klavs F Jensen
چکیده

Rapid mechanical deformation of cells has emerged as a promising, vector-free method for intracellular delivery of macromolecules and nanomaterials. This technology has shown potential in addressing previously challenging applications; including, delivery to primary immune cells, cell reprogramming, carbon nanotube, and quantum dot delivery. This vector-free microfluidic platform relies on mechanical disruption of the cell membrane to facilitate cytosolic delivery of the target material. Herein, we describe the detailed method of use for these microfluidic devices including, device assembly, cell preparation, and system operation. This delivery approach requires a brief optimization of device type and operating conditions for previously unreported applications. The provided instructions are generalizable to most cell types and delivery materials as this system does not require specialized buffers or chemical modification/conjugation steps. This work also provides recommendations on how to improve device performance and trouble-shoot potential issues related to clogging, low delivery efficiencies, and cell viability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Squeezing - a vector - free microfluidic platform for intracellular delivery

Intracellular delivery of material is a long-standing challenge for both therapeutic and research applications. Existing technologies rely on a variety of mechanisms to facilitate delivery. Vector-based methods, such as polymeric nanoparticles and liposomes, form complexes with the target material and subsequently facilitate its uptake by the cell of interest, often through endocytosis. Althoug...

متن کامل

A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing.

The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension an...

متن کامل

Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform.

Intracellular delivery of materials is a challenge in research and therapeutic applications. Physical methods of plasma membrane disruption have recently emerged as an approach to facilitate the delivery of a variety of macromolecules to a range of cell types. We use the microfluidic CellSqueeze delivery platform to examine the kinetics of plasma membrane recovery after disruption and its depen...

متن کامل

Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to "professional" APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass ...

متن کامل

Poly I:C Delivery into J774.1 & RAW264.7 Macrophages Induces Rapid Cell Death

Background: Cytosolic double-stranded RNA (dsRNA) is an important ‘molecular signature’ for the detection of intracellular viral infections. Although intracellular dsRNA is a known potent inducer of apoptosis, the optimal time and dose for the onset of dsRNA-mediated apoptosis have not been studied in detail. Objective: To perform an accurate temporal assessment of the cell death responses in d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2013